

The C7 horizontal conveyor at Hanson's Whatley Quarry

Case Study: Dunlop Superfort at Whatley Quarry

Vulcanising South West Ltd supply and install new conveyor belt at Hanson's flagship site

hatley has been operating since the 1960s and is the largest of Hanson UK's quarries. Situated between the villages of Mells and Chantry in the Mendip Hills, around four miles west of Frome, it employs more than 60 people directly, along with a wide range of support staff and contractors. Operating 24h a day, five days a week, and producing 4–5 million tonnes a year, the quarry supplies crushed limestone aggregate to local markets by road, and to depots in London and the South East via a dedicated rail link, whilst further on-site plants produce asphalt and ready-mixed concrete.

On 15 May 2019, Whatley Quarry approached Vulcanising South West Ltd (VSW) with a view to carrying out a belt calculation on the site's C7 conveyor – a horizontal belt that carries 63–150mm crushed limestone aggregate and plays a key role in ensuring uninterrupted primary and secondary crushing operations at the site. The maximum expected life of the 1000/4 6+2 belt (of unspecified origin) was, on average, 6–12 months, with a number of repairs being required during this period, especially at the splice, each carrying extra cost and downtime. VSW's calculations concluded that

16 | Quarry Management | April 2021

a type 1000/4 6+2 belt was excessive in this application, especially for the drum diameters on the C7 system. The snub roller diameters, in particular, were too small for the belt, putting unnecessary strain on the belt splice (see table 1).

 Table 1. Whatley Quarry C7 conveyor specifications

Whatley Quarry C7 conveyor specifications	;	
Conveyor layout	Horizontal	
Conveyor length	42.7m	
Angle of incline	0°	
Maximum tonnage	2,300 tonnes/h	
Maximum lump size	150mm	
Maximum stone drop	600mm	
Head drum diameter	630mm	
Tail drum diameter	500mm	
Gravity tension unit drum diameter	500mm	
Snub drums diameter	355mm	
Belt speed	2.2m/s	
Motor	28kW	

Under normal running conditions, the C7 belt carries between 500 and 1,400 tonnes of material per hour, depending on the number of crushers in operation. Average tonnage in normal operation is 1,200 tonnes/h, and the average tonnage carried by C7 over a 24h

Superior 800/4 b.	0 + 2.0 R with EN I	A Moulded ea	ges		
Comprying		STANDARD	DUNLOP AVE	RAGE	
The carcass is built up of 4 fabrics of Polvester warp and I	Polvamide	weft (EP).	boneon Are		
Fensile strength at break [N/mm]	_≥	800	974	ISO 283	
Adhesion between plies [N/mm]	≥	4.5	9.1	ISO 252	
Thickness [mm]		5.0	5.0	ISO 583	
longation at 10% IS nom [%]	2	1.5	1.0	150 283	
COVERS		STANDARD	DUNLOP AVERAGE		
brasion resistant (DIN Y), anti-static as per ISO 284, SBR					
op cover thickness [mm]		6.0	6.0	ISO 583	
Animum adhesion between cover and carcass [N/mm]		2.0	2.0	150 383	
Top	≥	3.5	11.7	ISO 252	
Bottom	_≥	3.5	11.7	ISO 252	
ECHNICAL DATA OF COVERS					
ensile strength at break [MPa]	≥	20	20.3	ISO 37	
longation at break [%]	≥	400	476	ISO 37	
ear strength [N]/[MPa]	≥	48.0/6.0	60.0/7.5	ISO 34-2	
brasion resistance [mm ³]	≤	150	108	ISO 4649	
lardness, ±5 [Shore A]		60	60	ISO 7619	
EMPERATURE RANGE					
Ainimum ambient temperature [°C]		-30			
Aaximum continuous material temperature [°C]		+80			
Aaximum peak material temperature [°C]		+100			
VINIMUM PULLEY DIAMETERS FOR BELT-LOADS FROM 6	0% UP TO 1	00%			
Prive pulley [mm]		630			
ail pulley [mm]		500			
lend/Snub pulley [mm]		400			
BELT CHARACTERISTICS					
telt width [mm]		1200			
Veight per metre [kg/m]		17.9			
otal thickness [mm]		13.0		ISO 583	
en engan (m) foll length (m)		98.0			
lumber of rolls		1			
toll diameter excl. packing [mm]		1336			
toll weight excl. packing [kg]		1754			
he Dunlop averages data shown above is generated via our ongoing qualit	r-testing progr	am.			
ll information is collected with great care but may be changed at any time	without prior i	otice.			

Fig. 1. Technical data sheet

Feeding, Conveying & Storage

sheet (see fig. 1) and quote for the supply and installation of a Dunlop Superfort 800/4 6+2 RA DIN Y belt with moulded edges. The contract was duly awarded to VSW and the new belt was fitted in June 2019.

period is 18,000 tonnes.

With a maximum material size of 150mm flowing on

to the belt from a 600mm

height, VSW determined

that a Dunlop 630/4 6+2

RA Superfort or Ultra X3

belt would be more than

capable of dealing with the

demands of this application

(see Dunlop Conveyor

Belting article on pages

However, in light of

the historical data, VSW

decided to increase the

specification to an 800/4

6+2, knowing that this

expected life of the belt

whilst still falling within the

range of Dunlop's 'safety factor'. Both VSW and

Dunlop were certain that

with its abrasion-resistant

'RA' covers coupled with

the correct tensile strength

selection, Superfort would

offer a significant increase

in lifespan as well as a

reduction in downtime

compared with the belts

used previously on the

Whatley Quarry, VSW

submitted a technical data

After discussing their analysis and findings with

operating costs,

and

C7 conveyor.

the

would maximize

12-14).

Prior to the VSW team's arrival on site in June, a safe system of work (SSoW) was completed by VSW's health and safety manager, Craig Jones, and the safe installation of the new belt was planned in conjunction with Hanson's on-site staff. In co-ordination with the team at Hanson, all lifting and handling equipment was also arranged prior to VSW's arrival. Once on site, the VSW team carried out job-specific risk assessments and method statements prior to conducting any installation work, such as splicing the belt, which was hot vulcanized on site using the company's Almex press.

After installation, the new belt remained fully operational for 12 months before unexpectedly having to be changed again, following the mechanical failure of a liner plate which cut the belt along its full length 8in from its edge. Despite this unfortunate setback, Hanson said that during its time in operation, routine inspection activities had continued as normal with a significant reduction in repair and belt maintenance costs. They added that the Dunlop Superfort belt had outperformed the one used previously and, as a result, saved on both downtime and maintenance costs during its life. According to Hanson, total belt life is currently estimated at 18 months, which, they say, represents a 75–100% increase in life against tonnage and an annual cost saving of 45%.

For further information visit: www.vulcanisingsw.com QM

Moving ahead.

COMPONENTS, NOTHING BUT COMPONENTS.

RULMECA UK Ltd Phone: +44 1536 748525 www.rulmeca.com

RULMI